题目内容
4.运行如图所示的程序框图,输出的S=-1.分析 模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=10时,不满足条件i≤9,退出循环,输出S的值为-1.
解答 解:模拟执行程序框图,可得
S=0,i=1
满足条件i≤9,执行循环体,S=-lg2,i=2
满足条件i≤9,执行循环体,S=-lg3,i=3
满足条件i≤9,执行循环体,S=-lg4,i=4
…
满足条件i≤9,执行循环体,S=-lg9,i=9
满足条件i≤9,执行循环体,S=-1,i=10
不满足条件i≤9,退出循环,输出S的值为-1,
故答案为:-1.
点评 本题主要考查了程序框图和算法,依次写出每次循环得到的S,k的值是解题的关键,属于基本知识的考查.
练习册系列答案
相关题目
14.曲线$\left\{\begin{array}{l}{x=|sinθ|}\\{y=cosθ}\end{array}\right.$(θ为参数)的方程等价于( )
| A. | x=$\sqrt{1-{y}^{2}}$ | B. | y=$\sqrt{1-{x}^{2}}$ | C. | y=±$\sqrt{1-{x}^{2}}$ | D. | x2+y2=1 |
12.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示.
请根据以上数据分析,这个经营部定价在11.5元/桶才能获得最大利润.
| 销售单价/元 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 日均销售量/桶 | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
9.某空调专卖店试销A、B、C三种新型空调,销售情况如表所示:
(1)求A型空调前三周的平均周销售量;
(2)为跟踪调查空调的使用情况,根据销售记录,从前三周售出的所有空调中随机抽取一台,求抽到的空调不是B型且不是第一周售出空调的概率;
(3)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值.
(注:方差s2=$\frac{1}{n}$[(x${\;}_{1}-\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
| 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | |
| A型数量(台) | 11 | 10 | 15 | A4 | A5 |
| B型数量(台) | 9 | 12 | 13 | B4 | B5 |
| C型数量(台) | 15 | 8 | 12 | C4 | C5 |
(2)为跟踪调查空调的使用情况,根据销售记录,从前三周售出的所有空调中随机抽取一台,求抽到的空调不是B型且不是第一周售出空调的概率;
(3)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值.
(注:方差s2=$\frac{1}{n}$[(x${\;}_{1}-\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
16.已知sin(x+$\frac{π}{2}$)=$\frac{1}{3}$,则cos2x=( )
| A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{7}{9}$ | D. | $\frac{7}{9}$ |
13.已知(1-2x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,则a3+a4等于( )
| A. | 0 | B. | -240 | C. | -480 | D. | 960 |
13.各项均为正数的等差数列{an}中,2a6+2a8=a72,则a7=( )
| A. | 2 | B. | 4 | C. | 16 | D. | 0 |