题目内容

函数f(x)=ax3+3x2+3x(a≠0).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;
(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.
解答: 解:(Ⅰ)函数f(x)=ax3+3x2+3x,
∴f′(x)=3ax2+6x+3,
令f′(x)=0,即3ax2+6x+3=0,则△=36(1-a),
①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;
②因为a≠0,∴当a≤1,△>0,f′(x)=0方程有两个根,x1=
-1+
1-a
a
,x2=
-1-
1-a
a

当0<a<1时,则当x∈(-∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(-∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;
当a<0时,则当x∈(-∞,x1)或(x2,+∞),f′(x)<0,故函数在(-∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;

(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,
当a<0时,f(x)在区间(1,2)是增函数,
当且仅当:f′(1)≥0且f′(2)≥0,解得-
5
4
≤a<0

a的取值范围[-
5
4
,0
)∪(0,+∞).
点评:本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网