题目内容

已知数列{an}和{bn}满足a1a2a3…an=(
2
)bn
(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2
(Ⅰ)求an和bn
(Ⅱ)设cn=
1
an
-
1
bn
(n∈N*).记数列{cn}的前n项和为Sn
  (i)求Sn
  (ii)求正整数k,使得对任意n∈N*均有Sk≥Sn
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)先利用前n项积与前(n-1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn
(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.
解答: 解:(Ⅰ)∵a1a2a3…an=(
2
)bn
(n∈N*) ①,
当n≥2,n∈N*时,a1a2a3an-1=(
2
)bn-1
 ②,
由①②知:an=(
2
)bn-bn-1

令n=3,则有a3=(
2
)b3-b2

∵b3=6+b2
∴a3=8.
∵{an}为等比数列,且a1=2,
∴{an}的公比为q,则q2=
a3
a1
=4,
由题意知an>0,∴q>0,∴q=2.
an=2n(n∈N*).
又由a1a2a3…an=(
2
)bn
(n∈N*)得:
21×22×23…×2n=(
2
)bn

2
n(n+1)
2
=(
2
)bn

∴bn=n(n+1)(n∈N*).
(Ⅱ)(i)∵cn=
1
an
-
1
bn
=
1
2n
-
1
n(n+1)
=
1
2n
-(
1
n
-
1
n+1
)

∴Sn=c1+c2+c3+…+cn
=
1
2
-(
1
1
-
1
2
)+
1
22
-(
1
2
-
1
3
)+…+
1
2n
-(
1
n
-
1
n+1
)

=
1
2
+
1
22
+…+
1
2n
-(1-
1
n+1
)

=1-
1
2n
-1+
1
n+1

=
1
n+1
-
1
2n

(ii)因为c1=0,c2>0,c3>0,c4>0;
当n≥5时,
cn=
1
n(n+1)
[
n(n+1)
2n
-1]


n(n+1)
2n
-
(n+1)(n+2)
2n+1
=
(n+1)(n-2)
2n+1
>0,

n(n+1)
2n
5•(5+1)
25
<1

所以,当n≥5时,cn<0,
综上,对任意n∈N*恒有S4≥Sn,故k=4.
点评:本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网