题目内容

设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的“t高调函数”.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的“4高调函数”,那么实数a的取值范围是(  )
A、[-
2
2
2
2
]
B、[-1,1]
C、[-1,
2
2
]
D、[-
2
2
,1]
考点:函数奇偶性的性质
专题:新定义,函数的性质及应用
分析:根据分段函数的意义,对f(x)的解析式分段讨论,可得其分段的解析式,结合其奇偶性,可得其函数的图象;进而根据题意中高调函数的定义,可得若f(x)为R上的4高调函数,则对任意x,有f(x+4)≥f(x),结合图象分析可得4≥4a2;解可得答案.
解答: 解:根据题意,当x≥0时,f(x)=|x-a2|-a2
则当x≥a2时,f(x)=x-2a2
0≤x≤a2时,f(x)=-x,
由奇函数对称性,有则当x≤-a2时,f(x)=x+2a2
-a2≤x≤0时,f(x)=-x,
图象如图:易得其图象与x轴交点为M(-2a2,0),N(2a2,0)
因此f(x)在[-a2,a2]是减函数,其余区间是增函数.
f(x)为R上的4高调函数,则对任意x,有f(x+4)≥f(x),
故当-2a2≤x≤0时,f(x)≥0,为保证f(x+4)≥f(x),必有f(x+4)≥0;即x+4≥2a2
有-2a2≤x≤0且x+4≥2a2可得4≥4a2
解可得:-1≤a≤1;
故选:B.
点评:本题主要考查学生的阅读能力,很应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网