题目内容
14.同时掷两个骰子,各掷一次,向上的点数之和是6的概率是( )| A. | $\frac{1}{12}$ | B. | $\frac{5}{36}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{6}$ |
分析 先求出基本事件总数n=6×6=36,再由列举法求出向上的点数之和是6包含的基本事件个数,由此能求出向上的点数之和是6的概率.
解答 解:同时掷两个骰子,各掷一次,
基本事件总数n=6×6=36,
向上的点数之和是6包含的基本事件有:
(1,5),(5,1),(2,4),(4,2),(3,3),共有5个,
∴向上的点数之和是6的概率p=$\frac{5}{36}$.
故选:B.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
5.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )
| A. | a∥b,b?α,则a∥α | B. | a?α,b?β,α∥β,则a∥b | ||
| C. | a?α,b?α,α∥β,b∥β,则α∥β | D. | α∥β,a?α,则a∥β |
9.华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取60名同学(男同学30名,女同学30名),给所有同学物理题和数学题各一题,让每位同学自由选择一道题进行解答.选题情况如表:(单位:人)
(1)在犯错误的概率不超过1%的条件下,能否判断高一学生对物理和数学的学习与性别有关?
(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为5-8分钟,乙每次解答一道物理题所用的时间为6-8分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;
(3)现从选择做物理题的8名女生中任意选取两人,对他们的解答情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列和数学期望.
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
| 物理题 | 数学题 | 总计 | |
| 男同学 | 16 | 14 | 30 |
| 女同学 | 8 | 22 | 20 |
| 总计 | 24 | 36 | 60 |
(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为5-8分钟,乙每次解答一道物理题所用的时间为6-8分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;
(3)现从选择做物理题的8名女生中任意选取两人,对他们的解答情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列和数学期望.
附表及公式:
| P(K2?k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,λ),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则λ=( )
| A. | -6 | B. | 6 | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
4.若tanα=2,则2cos2α+3sin2α-sin2α的值为( )
| A. | $\frac{2}{5}$ | B. | -$\frac{2}{5}$ | C. | 5 | D. | -$\sqrt{5}$ |