题目内容
已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+
}是等比数列,并求{an}的通项公式;
(2)求数列{an}的前n项和Sn.
(1)证明{an+
| 1 |
| 2 |
(2)求数列{an}的前n项和Sn.
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)在an+1=3an+1中两边加
,易知数列{an+
}是以3为公比,以a1+
=
为首项的等比数列,从而可求{an}的通项公式;
(2)由(1)知an=
,利用分组求和法即可求得数列{an}的前n项和Sn.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
(2)由(1)知an=
| 3n-1 |
| 2 |
解答:
解:(1)在an+1=3an+1中两边加
:an+
=3(an-1+
),…2分
可见数列{an+
}是以3为公比,以a1+
=
为首项的等比数列.…4分
故an=
×3n-1-
=
.…6分
(2)Sn=a1+a2+…+an
=
+
+…+
=
(3+32+…+3n)-
•n
=
•
-
=
…12分
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
可见数列{an+
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
故an=
| 3 |
| 2 |
| 1 |
| 2 |
| 3n-1 |
| 2 |
(2)Sn=a1+a2+…+an
=
| 31-1 |
| 2 |
| 32-1 |
| 2 |
| 3n-1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 3(1-3n) |
| 1-3 |
| n |
| 2 |
=
| 3n+1-2n-3 |
| 4 |
点评:本题考查数列的求和,考查等比关系的确定,求得an=
是关键,属于中档题.
| 3n-1 |
| 2 |
练习册系列答案
相关题目