题目内容

14.直线x-my-8=0与抛物线y2=8x交于A、B两点,O为坐标原点,则△OAB面积的取值范围是[64,+∞).

分析 联立方程$\left\{\begin{array}{l}x=my+8\\{y^2}=8x\end{array}\right.$,得y2-8my-64=0,利用韦达定理,结合三角形的面积,即可求出△OAB面积的取值范围.

解答 解:联立方程$\left\{\begin{array}{l}x=my+8\\{y^2}=8x\end{array}\right.$,得y2-8my-64=0,△>0,y1+y2=8m,y1y2=-64,
因为x-my-8=0过定点(8,0),
所以${S_{OAB}}=\frac{1}{2}|{{y_1}-{y_2}}|•8=4\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}=4\sqrt{64{m^2}+4•64}$,
当m=0时,Smin=64.
故答案为[64,+∞).

点评 本题考查△OAB面积的取值范围,考查直线与抛物线的位置关系,正确运用韦达定理是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网