题目内容
6.在三角形△ABC中,角A,B,C所对的边分别为a,b,c且A=60°,B=45°,c=20,则a=30$\sqrt{2}$-10$\sqrt{6}$.分析 由已知利用三角形内角和定理,诱导公式,两角和的正弦函数公式可求sinC的值,利用正弦定理即可解得a的值.
解答 解:∵A=60°,B=45°,c=20,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2}$+$\frac{1}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∴由正弦定理可得:a=$\frac{csinA}{sinC}$=$\frac{20×\frac{\sqrt{3}}{2}}{\frac{\sqrt{6}+\sqrt{2}}{4}}$=30$\sqrt{2}$-10$\sqrt{6}$.
故答案为:30$\sqrt{2}$-10$\sqrt{6}$.
点评 本题主要考查了三角形内角和定理,诱导公式,两角和的正弦函数公式,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
15.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如表统计数据表:
根据上表可得回归直线方程$\stackrel{∧}{y}$=a+0.76x,据此估计,若该社区一户家庭年支出为11.8万元,则该家庭的年收入为15万元.
| 收入x(万元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
| 支出y(万元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |