题目内容
正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为
,此时四面体ABCD的外接球的表面积为( )
| 2 |
| A、6π | ||
B、
| ||
| C、5π | ||
D、
|
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它扩展为三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积.
解答:
解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
三棱柱ABC-A1B1C1的中,底面边长为1,1,
,
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,
球心到底面的距离为1,
底面中心到底面三角形的顶点的距离为:
∴球的半径为r=
=
.
外接球的表面积为:4πr2=5π
故选:C.
三棱柱ABC-A1B1C1的中,底面边长为1,1,
| 2 |
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,
球心到底面的距离为1,
底面中心到底面三角形的顶点的距离为:
| ||
| 2 |
∴球的半径为r=
(
|
| ||
| 2 |
外接球的表面积为:4πr2=5π
故选:C.
点评:本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.
练习册系列答案
相关题目
四个顶点都在球O上的四面体ABCD所有棱长都为12,点E、F分别为棱AB、AC的中点,则球O截直线EF所得弦长为( )
A、6
| ||
| B、12 | ||
C、6
| ||
D、6
|
已知椭圆
+x2=1与抛物线x2=ay有相同的焦点F,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为( )
| y2 |
| 5 |
A、2
| ||
B、4
| ||
C、3
| ||
D、4
|
对于有线性相关关系的变量x,y,测得一组数据如表:
根据表,利用最小二乘法得它们的回归直线方程为
=8.5x+
,据此模型来预测x=20时,y的估计值是( )
| x | 2 | 4 | 5 | 6 | 8 |
| y | 20 | 40 | 60 | 60 | 70 |
| y |
| a |
| A、170 | B、175.5 |
| C、177.5 | D、212.5 |
函数f(x)=
+
的定义域是( )
| x+3 |
| 1 |
| x+2 |
| A、{x|x≠2} |
| B、{x|x≥-3} |
| C、{x|x≥-3或x≠-2} |
| D、{x|x≥-3且x≠-2} |
在四面体ABCD中,∠ABC=∠ABD=∠ADC=
,则下列是直角的为( )
| π |
| 2 |
| A、∠BCD | B、∠BDC |
| C、∠CBD | D、∠ACD |