题目内容

8.已知数列{an}满足a1=3,an+1=2an+f(n)(n∈N*).若f(n)=1,求证:数列{an+1}为等比数列;并求出{an}的通项公式.

分析 由已知得an+1+1=2(an+1),由此能证明数列{an+1}为首项为4,公比为2的等比数列,从而能求出{an}的通项公式.

解答 证明:∵数列{an}满足a1=3,an+1=2an+f(n)(n∈N*),f(n)=1,
∴an+1=2an+1,
∴an+1+1=2(an+1),
又a1+1=3+1=4,
∴数列{an+1}为首项为4,公比为2的等比数列,
∴${a}_{n}+1=4×{2}^{n-1}$=2n+1
∴${a}_{n}={2}^{n+1}-1$.

点评 本题考查等比数列的证明,考查数列的通项公式的求法,是基础题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关题目
5.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;
(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩的频数分布表

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网