题目内容

将函数y=3sin(2x+φ),|φ|<
π
2
的图象向左平移
π
3
个得到偶函数y=f(x)的图象.
(1)求y=f(x)解析式;
(2)求y=f(x)的最大值及单调增区间.
考点:函数y=Asin(ωx+φ)的图象变换,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由条件利用函数y=Asin(ωx+φ)的图象变换规律、诱导公式求得f(x)=3cos2x.
(2)(2)由f(x)的解析式,可得它的最大值,令2kπ-π≤2x≤2kπ,k∈z,求得x的范围,可得函数的增区间.
解答: 解:(1)将函数y=3sin(2x+φ),|φ|<
π
2
的图象向左平移
π
3
个得到函数y=3sin[2(x+
π
3
)+φ)的图象,
故偶函数y=f(x)=3sin(2x+
3
+φ),∴
3
+φ=kπ+
π
2
,k∈z,∴φ=-
π
6
,f(x)=3sin(2x+
3
-
π
6
)=3cos2x.
(2)由f(x)=3cos2x,可得它的最大值为3,令2kπ-π≤2x≤2kπ,k∈z,求得 kπ-
π
2
≤x≤kπ,
故函数f(x)的增区间为[kπ-
π
2
,kπ],k∈z.
点评:本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网