题目内容

3.已知正项递增等比数列{an}的首项为8,其前n项和记为Sn,且S3-2S2=-2.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足${b_n}=2{log_{\frac{3}{2}}}(\frac{3}{16}{a_n})+1$,其前n项和为Tn,试求数列$\left\{{\frac{1}{T_n}}\right\}$的前n项和Bn

分析 (1)通过设an=8qn-1(q>1),代入S3-2S2=-2计算可知公比q=$\frac{3}{2}$,进而计算可得结论;
(2)通过(1)可知bn=2n+1,利用等比数列、等差数列的求和公式计算可知Tn=n(n+2),进而裂项可知$\frac{1}{{T}_{n}}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),并项相加即得结论.

解答 解:(1)依题意,an=8qn-1(q>1),
∵S3-2S2=-2,即(8+8q+8q2)-2(8+8q)=-2,
∴4q2-4q-3=0,
解得:q=$\frac{3}{2}$或q=-$\frac{1}{2}$(舍),
故数列{an}的通项公式an=8•$(\frac{3}{2})^{n-1}$;
(2)由(1)可知${b_n}=2{log_{\frac{3}{2}}}(\frac{3}{16}{a_n})+1$=2$lo{g}_{\frac{3}{2}}[\frac{3}{16}•8•(\frac{3}{2})^{n-1}]$+1=2n+1,
故数列{bn}的前n项和为Tn=2•$\frac{n(n+1)}{2}$+n=n(n+2),
∴$\frac{1}{{T}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Bn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$).

点评 本题考查数列的通项及前n项和,考查裂项相消法,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网