题目内容

2.在直角坐标系中,已知两点A(x1,y1),B(x2,y2);x1,x2是一元二次方程2x2-2ax+a2-4=0两个不等实根,且A、B两点都在直线y=-x+a上.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$;
(2)a为何值时$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角为$\frac{π}{3}$.

分析 (1)由判别式大于0求出a的范围,利用根与系数关系结合A、B两点都在直线y=-x+a上求得$\overrightarrow{OA}•\overrightarrow{OB}$;
(2)求出方程的根,结合A、B两点都在直线y=-x+a上可得x1=y2,x2=y1,求出$|\overrightarrow{OA}|•|\overrightarrow{OB}|$,再由数量积公式求出$\overrightarrow{OA}•\overrightarrow{OB}$,与(1)中的$\overrightarrow{OA}•\overrightarrow{OB}$结合得到关于a的方程,求解方程得答案.

解答 解:(1)∵x1、x2是方程2x2-2ax+a2-4=0两个不等实根,
∴△=4a2-8(a2-4)>0,解得:$-2\sqrt{2}<a<2\sqrt{2}$,
且x1+x2=a,${x_1}{x_2}=\frac{1}{2}({a^2}-4)$,
又∵A、B两点都在直线y=-x+a上,
∴y1y2=(-x1+a)(-x2+a)=${x_1}{x_2}-a({x_1}+{x_2})+{a^2}$=$\frac{1}{2}({a^2}-4)$,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=${x}_{1}{x}_{2}+{y}_{1}{y}_{2}=\frac{1}{2}({a}^{2}-4)+\frac{1}{2}({a}^{2}-4)={a}^{2}-4$;
(2)求解方程2x2-2ax+a2-4=0,得${x_1}=\frac{{a-\sqrt{8-{a^2}}}}{2}$,${x_2}=\frac{{a+\sqrt{8-{a^2}}}}{2}$,
∴${y_1}=-{x_1}+a=\frac{{a+\sqrt{8-{a^2}}}}{2}={x_2}$,同理y2=x1
∴$|\overrightarrow{OA}|•|\overrightarrow{OB}|=\sqrt{({{x}_{1}}^{2}+{{y}_{1}}^{2})({{x}_{2}}^{2}+{{y}_{2}}^{2})}$=$x_1^2+x_2^2$=${({x_1}+{x_2})^2}-2{x_1}{x_2}=4$.
当$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角为$\frac{π}{3}$时,$\overrightarrow{OA}•\overrightarrow{OB}=|{\overrightarrow{OA}}||{\overrightarrow{OB}}|cos\frac{π}{3}=4×\frac{1}{2}=2$,
∴a2-4=2,解得:$a=±\sqrt{6}∈(-2\sqrt{2},2\sqrt{2})$.
∴$a=±\sqrt{6}$.

点评 本题考查一元二次方程的根与系数关系,考查了平面向量的数量积运算,训练了灵活变形能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网