题目内容
12.△ABC中,点D在BC上,AD平分∠BAC,若$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则$\overrightarrow{AD}$=( )| A. | $\frac{2}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow{b}$ | B. | $\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow{b}$ | C. | $\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow{b}$ | D. | $\frac{3}{5}\overrightarrow{a}+\frac{2}{5}\overrightarrow{b}$ |
分析 由角平分线的性质可得:$\frac{BD}{DC}=\frac{AB}{AC}$,$BD=\frac{2}{5}BC$.再利用向量三角形法则$\overrightarrow{BD}=\frac{2}{5}\overrightarrow{BC}$=$\frac{2}{5}(\overrightarrow{AC}-\overrightarrow{AB})$,$\overrightarrow{AD}=\overrightarrow{BD}-\overrightarrow{BA}$,代入即可得出.
解答 解:由角平分线的性质可得:$\frac{BD}{DC}=\frac{AB}{AC}$,∴$\frac{BD}{BC}=\frac{AB}{AB+AC}$=$\frac{2}{2+3}$=$\frac{2}{5}$,∴$BD=\frac{2}{5}BC$.
∴$\overrightarrow{BD}=\frac{2}{5}\overrightarrow{BC}$=$\frac{2}{5}(\overrightarrow{AC}-\overrightarrow{AB})$,
∴$\overrightarrow{AD}=\overrightarrow{BD}-\overrightarrow{BA}$=$\frac{2}{5}(\overrightarrow{AC}-\overrightarrow{AB})$+$\overrightarrow{AB}$=$\frac{2}{5}\overrightarrow{AC}+\frac{3}{5}\overrightarrow{AB}$=$\frac{2}{5}\overrightarrow{b}+\frac{3}{5}\overrightarrow{a}$.
故选:D.
点评 本题考查了角平分线的性质、向量三角形法则、向量共线定理,考查了推理能力与计算能力,属于中档题.
| A. | {x|0<x<1} | B. | {x|0<x<3} | C. | {x|-1<x<1} | D. | {x|-1<x<3} |
| A. | 64 | B. | 4$\sqrt{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{4}$ |