题目内容
7.已知s$in2α=\frac{24}{25}$,且$π<α<\frac{5π}{4}$,则cosα-sinα=-$\frac{1}{5}$.分析 由s$in2α=\frac{24}{25}$,利用同角二角函数关系式能求出(cosα-sinα)2=$\frac{1}{25}$,再由$π<α<\frac{5π}{4}$,得到sinα>cosα,由此能求出cosα-sinα.
解答 解:∵s$in2α=\frac{24}{25}$,
∴(cosα-sinα)2=cos2α+sin2α-2cosαsinα=1-sin2α=1-$\frac{24}{25}$=$\frac{1}{25}$,
∵$π<α<\frac{5π}{4}$,∴sinα>cosα,
∴cosα-sinα=-$\frac{1}{5}$.
故答案为:-$\frac{1}{5}$.
点评 本题考查三角函数化简求值,考查同角三角函数关系式,考查推理论证能力、运算求解能力、创新应用能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
18.函数$y=sin(2x-\frac{π}{6})$图象的一条对称轴方程是( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{2}$ |
12.
半径为1的球被一平面截去部分得一个几何体,其三视图和尺寸如图所示,则球心到该截面的距离为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
16.
如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,几何体的表面积为( )
| A. | 4+2($\sqrt{2}$+$\sqrt{3}$) | B. | 6+2($\sqrt{2}$+$\sqrt{5}$) | C. | 10 | D. | 12 |
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\sqrt{5}$,圆心在x轴的正半轴上的圆M与双曲线的渐近线相切,且圆M的半径为2,则以圆M的圆心为焦点的抛物线的标准方程为( )
| A. | y2=8$\sqrt{5}$x | B. | y2=4$\sqrt{5}$x | C. | y2=2$\sqrt{5}$x | D. | y2=$\sqrt{5}$x |