题目内容


已知函数f(x)=|x-a|,其中a>1.

(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;

(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.


解:(1)当a=2时,f(x)+|x-4|=

当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;

当2<x<4时,f(x)≥4-|x-4|无解;

当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;

所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.

(2)记h(x)=f(2x+a)-2f(x),

则h(x)=

由|h(x)|≤2,

解得≤x≤.

又已知|h(x)|≤2的解集为{x|1≤x≤2},

所以

于是a=3.

12.已知函数f(x)=|x+a|.

(1)当a=-1时,求不等式f(x)≥|x+1|+1的解集;

(2)若不等式f(x)+f(-x)<2存在实数解,求实数a的取值范围.

解:(1)当a=-1时,

f(x)≥|x+1|+1可化为|x-1|-|x+1|≥1,

化简得解得x≤-1,或-1<x≤-,

即所求解集为{x︱x≤-}.

(2)令g(x)=f(x)+f(-x),

则g(x)=|x+a|+|x-a|≥2|a|,所以2>2|a|,即-1<a<1.所以实数a的取值范围是(-1,1).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网