题目内容

9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点为F,若双曲线上存在点A使△AOF为正三角形,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{3}+1$D.$\sqrt{2}$+1

分析 由于OF为半焦距c,利用等边三角形性质,即可得点A的一个坐标,代入双曲线标准方程即可得双曲线的离心率.

解答 解:∵双曲线上存在点A使△AOF为正三角形,
设F为右焦点,OF=c,A在第一象限,
∴点A的坐标为($\frac{1}{2}$c,$\frac{\sqrt{3}}{2}$c)
代入双曲线方程得:$\frac{{c}^{2}}{4{a}^{2}}$-$\frac{3{c}^{2}}{4{b}^{2}}$=1,
即为$\frac{{c}^{2}}{4{a}^{2}}$-$\frac{3{c}^{2}}{4({c}^{2}-{a}^{2})}$=1,
即$\frac{1}{4}$e2-$\frac{3{e}^{2}}{4{e}^{2}-4}$=1,
解得e=1+$\sqrt{3}$.
故选:C.

点评 本题主要考查了双曲线的标准方程、双曲线的几何性质,双曲线的离心率的定义及其求法,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网