题目内容
8.| A. | 510 | B. | 2178 | C. | 3570 | D. | 15246 |
分析 由题意可得,该表示为七进制,运用进制转换,即可得到所求的十进制数.
解答 解:由题意满七进一,可得该图示为七进制数,
化为十进制数为1×73+3×72+2×7+6=510.
故选:A.
点评 本题考查计数的方法,注意运用七进制转化为十进制数,考查运算能力,属于基础题.
练习册系列答案
相关题目
16.已知函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为$\frac{2π}{3}$,则该函数的单调增区间为( )
| A. | [$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{6}$](k∈Z) | B. | [$\frac{2kπ}{3}$-$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{18}$](k∈Z) | ||
| C. | [kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z) | D. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) |
2.某研究员为研究某两个变量的相关性,随机抽取这两个变量样本数据如下表:
若依据表中数据画出散点图,则样本点(xi,yi)(i=1,2,3,4,5)都在曲线y=$\sqrt{x}$+1附近波动,但由于某种原因表中一个x值被污损,将方程y=$\sqrt{x}$+1作为回归方程,则根据回归方程y=$\sqrt{x}$+1和表中数据可求得被污损数据为( )
| x | 0.04 | 1 | 4.84 | 10.24 | |
| y | 1.1 | 2.1 | 2.3 | 3.3 | 4.3 |
| A. | -4.32 | B. | 1.69 | C. | 1.96 | D. | 4.32 |
9.
一个几何体的三视图如图所示,则这个几何体的体积为( )
| A. | 2+π | B. | 2+3π | C. | 3+$\frac{π}{2}$ | D. | 3+3π |
6.
某几何体的三视图如图所示,则其体积为( )
| A. | $\frac{3π}{4}$ | B. | $\frac{π+2}{4}$ | C. | $\frac{π+1}{2}$ | D. | $\frac{3π+2}{4}$ |
7.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
(1)求y关于x的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.