题目内容
1.若x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤-3(x-3)}\end{array}\right.$,则z=2x+y的最大值为8.分析 作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.
解答
解:先作出不等式$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤-3(x-3)}\end{array}\right.$对应的区域,
z=2x+y的最大值,由图形可知直线z=2x+y过A时,目标函数取得最大值,
由$\left\{\begin{array}{l}{x=1}\\{y=-3(x-3)}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=6}\end{array}\right.$,即A(1,6),
z=2x+y=2×1+6=8.
故答案为:8.
点评 本题主要考查线性规划的应用,求出目标函数和条件对应直线的交点坐标是解决本题的关键.
练习册系列答案
相关题目
11.
如图,长方形的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD,与DA运动,记∠BOP=x,将动点P到A,B两点距离之和表示为函数f(x),则f(x)的图象大致为( )
| A. | B. | ||||
| C. | D. |
9.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是( )
| A. | ($\frac{\sqrt{2}}{2}$,1) | B. | ($\frac{1}{2}$,1) | C. | (0,$\frac{\sqrt{2}}{2}$) | D. | (0,$\frac{1}{2}$) |
16.复数$z=\frac{1-i}{1+i}$(i为虚数单位)的虚部是( )
| A. | 1 | B. | -1 | C. | i | D. | -i |
6.
秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为 2,则输出v的值为( )
| A. | 211-1 | B. | 211-2 | C. | 210-1 | D. | 210-2 |