题目内容
3.| A. | (-∞,-1)∪(0,1) | B. | (-2,-1)∪(1,2) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-2)∪(2,+∞) |
分析 通过图象得到函数的单调性,从而得到导数在某区间的符合,通过讨论x的符号求解不等式即可.
解答 解:由图象可知f′(x)=0的解为x=-1和x=1
函数f(x)在(-∞,-1)上增,在(-1,1)上减,在(1,+∞)上增
∴f′(x)在(-∞,-1)上大于0,在(-1,1)小于0,在(1,+∞)大于0
当x<0时,f′(x)>0解得x∈(-∞,-1)
当x>0时,f′(x)<0解得x∈(0,1)
综上所述,x∈(-∞,-1)∪(0,1),
故选:A.
点评 本题考查了函数的图象,导数的运算以及其他不等式的解法,分类讨论的思想的渗透,本题属于基础题.
练习册系列答案
相关题目
13.
如图是水平放置的△ABC按“斜二测画法”得到的直观图,其中B′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,那么△ABC的面积是( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | 3$\sqrt{2}$ |
11.下列各组函数中,表示同一函数的是( )
| A. | y=1,y=$\frac{x}{x}$ | B. | y=$\frac{{x}^{2}-x}{x}$与y=x-1 | C. | y=x,y=$\root{3}{{x}^{3}}$ | D. | y=|x|,y=($\sqrt{x}$)2 |
8.$\sqrt{1-2sin(\frac{π}{2}+2)cos(\frac{π}{2}+2)}$的值是( )
| A. | sin2-cos2 | B. | cos2-sin2 | C. | -(sin2+cos2) | D. | sin2+cos2 |
12.
如图,在三棱台ABC-A1B1C1中,截去三棱锥A1-ABC,则剩余部分是( )
| A. | 三棱锥 | B. | 四棱锥 | C. | 三棱柱 | D. | 五棱锥 |