题目内容
18.已知等差数列{an}满足:a1=2且a22=a1a5(1)求数列{an}的通项公式;
(2)记Sn为数列{a2n-1}的前n项和,求Sn.
分析 (1)设等差数列{an}的公差为d,由题意和等差数列的通项公式列出方程,求出d的值,由等差数列的通项公式分别求出an;
(2)由(1)和等差数列的前n项和公式,分别求出 a2n-1和Sn.
解答 解:(1)设等差数列{an}的公差为d,
∵a1=2且a22=a1a5,∴(2+d)2=2(2+4d),
化简得:d2-4d=0,解得d=0或d=4.
当d=0时,an=2;
当d=4时,an=2+(n-1)•4=4n-2,
∴an=2或an=4n-2.-------6分
(2)由(1)得,
当an=2时,a2n-1=2,则Sn=2n,--------9分
当an=4n-2时,a2n-1=8n-6,
Sn=$\frac{n(2+8n-6)}{2}$=4n2-2n----12分.
点评 本题考查了等差数列的通项公式,以及等差数列的前n项和公式应用,属于基础题.
练习册系列答案
相关题目
8.已知点O是锐角△ABC的外心,a,b,c分别为内角A、B、C的对边,A=$\frac{π}{4}$,且$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=λ$\overrightarrow{OA}$,则λ的值为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | -$\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
13.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则(∁UA)∩B=( )
| A. | {2,4} | B. | { 3 } | C. | {2,4,6} | D. | {1,2,3,4,5} |
3.
在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为( )
| A. | (-∞,-1)∪(0,1) | B. | (-2,-1)∪(1,2) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-2)∪(2,+∞) |
10.已知x与y之间的几组数据如表:
假设根据上表数据所得线性回归方程为$\widehat{y}$=$\widehat{b}$x+<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>a^$\widehat{a}$,根据中间两组数据(4,3)和(5,4)求得的直线方程为y=bx+a,则$\widehat{b}$<b,$\widehat{a}$>a.(填“>”或“<”)
附:回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
附:回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
7.在150米高的山顶上,测得山下一塔的塔顶与塔底的俯角分别为30°,60°x=0,则塔高为( )
| A. | 50米 | B. | 75米 | C. | 100米 | D. | 125米 |