题目内容

已知-1<a<2,0<b<3,则a-b的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.
解答: 解:作出-1<a<2,0<b<3所对应的可行域,(如图阴影),
目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,
平移直线可知,当直线经过点A(-1,3)时,z取最小值-4,
当直线经过点B(2,0)时,z取最大值2,
∴a-b的取值范围是(-4,2),
故答案为:(-4,2).
点评:本题考查线性规划,准确作图是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网