题目内容

9.若函数f(x)=x2-a|x-1|在[0,+∞)上单调递增,则实数a的取值范围是[-2,0].

分析 f(x)=x2+a|x-1|=$\left\{\begin{array}{l}{{x}^{2}+ax-a,x≥1}\\{{x}^{2}-ax+a,x<1}\end{array}\right.$,结合题意可得函数y=x2+ax-a在[1,+∞)单调递增,y=x2-ax+a在[0,1)单调递增,故有 $\left\{\begin{array}{l}{-\frac{a}{2}≤1}\\{\frac{a}{2}≤0}\\{1-a+a≤1+a-a}\end{array}\right.$,由此求得实数a的取值范围.

解答 解:∵f(x)=x2+a|x-1|=$\left\{\begin{array}{l}{{x}^{2}+ax-a,x≥1}\\{{x}^{2}-ax+a,x<1}\end{array}\right.$,
∴要使f(x)在[0,+∞)上单调递增,需函数y=x2+ax-a在[1,+∞)单调递增,
且y=x2-ax+a在[0,1)单调递增,故有 $\left\{\begin{array}{l}{-\frac{a}{2}≤1}\\{\frac{a}{2}≤0}\\{1-a+a≤1+a-a}\end{array}\right.$,
求得-2≤a≤0,∴实数a的取值范围是[-2,0],
故答案为:[-2,0].

点评 本题主要考查含绝对值函数的单调性,二次函数的单调性及单调区间,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网