ÌâÄ¿ÄÚÈÝ
12£®£¨¢ñ£©Ç󶯵ãMµÄ¹ì¼£EµÄ·½³Ì£»
£¨¢ò£©¹ýµãF2µÄÖ±Ïßl£¨ÓëxÖá²»ÖØºÏ£©Óë¹ì¼£E½»ÓÚA£¬CÁ½µã£¬Ïß¶ÎACµÄÖеãΪG£¬Á¬½ÓOG²¢ÑÓ³¤½»¹ì¼£EÓÚBµã£¨OÎª×ø±êԵ㣩£¬ÇóËıßÐÎOABCµÄÃæ»ýSµÄ×îСֵ£®
·ÖÎö £¨¢ñ£©È·¶¨¶¯µãMµÄ¹ì¼£ÊÇÒÔF1£¨-1£¬0£©£¬F2£¨1£¬0£©Îª½¹µãµÄÍÖÔ²£¬¼´¿ÉÇ󶯵ãMµÄ¹ì¼£EµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßACµÄ·½³ÌΪx=my+1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬¿ÉµÃ£¨4+3m2£©y2+6my-9=0£¬±íʾ³öËıßÐÎOABCµÄÃæ»ý£¬¼´¿ÉÇó³öËıßÐÎOABCµÄÃæ»ýSµÄ×îСֵ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬MP´¹Ö±Æ½·ÖF2N£¬
¡à|MF1|+|MF2|=4
ËùÒÔ¶¯µãMµÄ¹ì¼£ÊÇÒÔF1£¨-1£¬0£©£¬F2£¨1£¬0£©Îª½¹µãµÄÍÖÔ²£¬¡..£¨3·Ö£©
ÇÒ³¤Ö᳤Ϊ2a=4£¬½¹¾à2c=2£¬ËùÒÔa=2£¬c=1£¬b2=3£¬
ÇúÏßEµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬G£¨x0£¬y0£©£®
ÉèÖ±ÏßACµÄ·½³ÌΪx=my+1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬¿ÉµÃ£¨4+3m2£©y2+6my-9=0£¬
¡ày1+y2=-$\frac{6m}{4+3{m}^{2}}$£¬y1y2=-$\frac{9}{4+3{m}^{2}}$£¬
ÓÉÏÒ³¤¹«Ê½¿ÉµÃ|AC|=$\sqrt{1+{m}^{2}}$|y1-y2|=$\frac{12£¨1+{m}^{2}£©}{4+3{m}^{2}}$£¬
ÓÖy0=-$\frac{3m}{4+3{m}^{2}}$£¬
¡àG£¨$\frac{4}{\sqrt{4+3{m}^{2}}}$£¬-$\frac{3m}{4+3{m}^{2}}$£©£¬
Ö±ÏßOGµÄ·½³ÌΪy=-$\frac{3m}{4}$x£¬´úÈëÍÖÔ²·½³ÌµÃx2=$\frac{16}{4+3{m}^{2}}$£¬
¡àB£¨$\frac{4}{\sqrt{4+3{m}^{2}}}$£¬-$\frac{3m}{\sqrt{4+3{m}^{2}}}$£©£¬
Bµ½Ö±ÏßACµÄ¾àÀëd1=$\frac{\sqrt{4+3{m}^{2}}-1}{\sqrt{1+{m}^{2}}}$£¬
Oµ½Ö±ÏßACµÄ¾àÀëd2=$\frac{1}{\sqrt{1+{m}^{2}}}$£¬
¡àSABCD=$\frac{1}{2}$|AC|£¨d1+d2£©=6$\sqrt{\frac{1}{3}-\frac{1}{3£¨4+3{m}^{2}£©}}$¡Ý3£¬µ±m=0ʱȡµÃ×îСֵ3£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éÃæ»ýµÄ¼ÆË㣬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 | B£® | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 | C£® | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | D£® | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 |