题目内容

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为3x±4y=0,右焦点为(5,0),则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

分析 利用双曲线的渐近线方程推出a,b关系,通过右焦点坐标,求解a,b即可得到双曲线方程.

解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为3x±4y=0,可得4b=3a,右焦点为(5,0),可得c=5,则a2+b2=25,解得a=4,b=3,所求双曲线方程为:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1.
故选:D.

点评 本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网