题目内容

13.在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cos B=bcos C.
(1)求角B的大小;
(2)若$a=c=\sqrt{3}$,求b的值.

分析 (1)根据正弦定理和两角和的正弦公式,根据特殊角的三角函数值即可求出,
(2)根据余弦定理求出b即可

解答 解:(1)因为(2a-c)cos B=bcos C,由正弦定理,得
(2sin A-sin C)cos B=sin Bcos C,
即2sin Acos B=sin Ccos B+sin Bcos C=sin(C+B)=sin A.
在△ABC中,0<A<π,sin A>0,
所以cos B=$\frac{1}{2}$.
又因为0<B<π,
故B=$\frac{π}{3}$.
(2)因为$a=c=\sqrt{3}$,由余弦定理得b2=a2+c2-2accos B,
所以b2=3.
所以$b=\sqrt{3}$.

点评 本题考查正余弦定理的应用,涉及三角函数的恒等变形,关键是熟悉三角函数的恒等变形的公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网