ÌâÄ¿ÄÚÈÝ
2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãF£¨-1£¬1£©¼°Ö±Ïßl£ºx-y+1=0£¬¶¯µãP£¨x£¬y£©Âú×ãÏÂÁÐÁ½¸öÌõ¼þ£º¢Ù$|{PF}|=\sqrt{2}d$£¬ÆäÖÐdÊÇPµ½lµÄ¾àÀ룻¢Ú$\left\{\begin{array}{l}x£¼0\\ y£¾0\\ x-y£¾-\frac{33}{8}\end{array}\right.$£¬Ôò¶¯µãP£¨x£¬y£©µÄ¹ì¼£·½³ÌΪxy=-$\frac{1}{2}$£¬£¨-4$£¼x£¼-\frac{1}{8}$£©£®·ÖÎö Çó³ö|PF|£¬d£¬¸ù¾Ý£º¢Ù$|{PF}|=\sqrt{2}d$£¬ÆäÖÐdÊÇPµ½lµÄ¾àÀ룻¢Ú$\left\{\begin{array}{l}x£¼0\\ y£¾0\\ x-y£¾-\frac{33}{8}\end{array}\right.$¼´¿ÉÇ󶯵ãP£¨x£¬y£©µÄ¹ì¼£·½³Ì£»
½â´ð ½â£º|PF|=$\sqrt{£¨x+1£©^{2}+£¨y-1£©^{2}}=\sqrt{{x}^{2}+{y}^{2}+2x-2y+2}$£¬d=$\frac{|x-y+1|}{\sqrt{2}}$£®
ÓÉ¢Ù|PF|=$\sqrt{2}$dµÃ£¬$\sqrt{{x}^{2}+{y}^{2}+2x-2y+2}$=$\sqrt{2}$•$\frac{|x-y+1|}{\sqrt{2}}$
¼´xy=-$\frac{1}{2}$£¬
½«xy=-$\frac{1}{2}$´úÈë¢ÚµÃ£º$\left\{\begin{array}{l}{x£¼0}\\{x+\frac{1}{2x}£¾-\frac{33}{8}}\end{array}\right.$£¬¼´-4$£¼x£¼-\frac{1}{8}$
¡à¶¯µãP£¨x£¬y£©µÄ¹ì¼£·½³ÌΪ xy=-$\frac{1}{2}$£¬£¨-4$£¼x£¼-\frac{1}{8}$£©
¹Ê´ð°¸Îª£ºxy=-$\frac{1}{2}$£¬£¨-4$£¼x£¼-\frac{1}{8}$£©
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÒÑÖª¼¯ºÏA={0£¬1£¬2}£¬B={y|y=2x£¬x¡ÊA}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
| A£® | {0£¬1£¬2} | B£® | {1£¬2} | C£® | {1£¬2£¬4} | D£® | {1£¬4} |
10£®ÎÒÃÇÒ×Öª$\sqrt{2}-1£¾2-\sqrt{3}£¬\sqrt{3}-\sqrt{2}£¾\sqrt{5}-2£¬2-\sqrt{3}£¾\sqrt{6}-\sqrt{5}£¬¡$£¬´ÓÇ°Ãæn¸ö²»µÈʽÀà±ÈµÃ¸üÒ»°ãµÄ½áÂÛΪ£¨¡¡¡¡£©
| A£® | $\sqrt{n+1}-n£¾\sqrt{n+3}-\sqrt{n+2}£¨{n¡Ê{N^*}}£©$ | B£® | $\sqrt{n+1}-n£¾\sqrt{n+3}-n£¨{n¡Ê{N^*}}£©$ | ||
| C£® | $\sqrt{n+1}-\sqrt{n}£¾\sqrt{n+3}-\sqrt{n+2}£¨{n¡Ê{N^*}}£©$ | D£® | $\sqrt{n+1}-\sqrt{n}£¾n-\sqrt{n+2}£¨{n¡Ê{N^*}}£©$ |
17£®
ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåÌå»ýÊÇ£¨¡¡¡¡£©
| A£® | $\frac{{£¨8+¦Ð£©\sqrt{3}}}{3}$ | B£® | $\frac{{£¨8+2¦Ð£©\sqrt{3}}}{6}$ | C£® | $\frac{{£¨8+¦Ð£©\sqrt{3}}}{6}$ | D£® | $\frac{{£¨4+¦Ð£©\sqrt{3}}}{3}$ |
7£®Èôa£¾0£¬b£¾0£¬ÇÒ$\frac{1}{a+1}+\frac{1}{a+2b}=1$£¬Ôò2a+bµÄ×îСֵΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | $\frac{5}{2}$ | C£® | $4+2\sqrt{3}$ | D£® | $\frac{1}{2}+\sqrt{3}$ |
14£®ÈôijÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖи©ÊÓͼΪֱ½ÇÌÝÐΣ¬ÔòÕâ¸öÈýÀâ×¶ËĸöÃæµÄÃæ»ýµÄ×î´óÖµÊÇ$\sqrt{5}$£®
11£®[Ñ¡×ö¶þ]ÇúÏßy=x2µÄ²ÎÊý·½³ÌÊÇ£¨¡¡¡¡£©
| A£® | $\left\{\begin{array}{l}{x={t}^{2}}\\{y={t}^{4}}\end{array}\right.$£¨tΪ²ÎÊý£© | B£® | $\left\{\begin{array}{l}{x=sint}\\{y=si{n}^{2}t}\end{array}\right.$£¨tΪ²ÎÊý£© | ||
| C£® | $\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$£¨tΪ²ÎÊý£© | D£® | $\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}\right.$£¨tΪ²ÎÊý£© |