题目内容

14.某木材加工厂为了提高生产效率和产品质量,决定添置一台12.5万元的新木材加工机器.若机器第x天的维护费为x元,则该机器使用多少天能使平均每天的支出最少?

分析 确定每天的维护费数量,可得总维护费,进而可得总支出费、平均每天的支出,利用基本不等式,即可求得结论.

解答 解:设机器使用x天最经济,则机器每天的维护费数量为1,2,3,…,x(元)
这是一个等差数列,总维护费为$\frac{x(x+1)}{2}$(元)总支出费为125000+$\frac{x(x+1)}{2}$(元)
平均每天的支出为$y=\frac{{125000+\frac{x(x+1)}{2}}}{x}=\frac{125000}{x}+\frac{x}{2}+\frac{1}{2}$$≥2\sqrt{\frac{125000}{x}•\frac{x}{2}}+\frac{1}{2}=\frac{1001}{2}$当且仅当$\frac{125000}{x}=\frac{x}{2}$,即x=500时等号成立.
答:该机器使用500天能使平均每天的支出最少.

点评 本题考查函数模型的构建,考查基本不等式,正确确定函数解析式是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网