题目内容

直线x+
3
y=0被圆x2+y2-4y=0所截得的弦长为(  )
A、1
B、2
C、
3
D、2
3
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:首先根据已知题意分析圆心与半径.通过直线与圆相交构造一个直角三角形.直角边分别为半弦长,弦心距.斜边为半径.按照勾股定理求出半弦长,然后就能求出弦长.
解答: 解:根据题意,圆为x2+y2-4y=0
故其圆心为(0,2),半径为:2
圆心到直线的距离为:d=
|2
3
|
1+3
=
3

由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形
故由勾股定理可得:l=2
4-3
=2
故选:B.
点评:本题考查直线与圆的方程的应用,首先根据圆分析出圆的要素,然后根据直线与圆相交时构造的直角三角形按照勾股定理求出结果.属于基础题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网