题目内容

已知直线x+y=a与圆x2+y2=4交于A,B两点,且OA⊥OB(其中O为坐标原点),则实数a等于
 
考点:直线与圆相交的性质
专题:计算题,直线与圆
分析:利用OA⊥OB,OA=OB,可得出三角形AOB为等腰直角三角形,由圆的标准方程得到圆心坐标与半径R,可得出AB,求出AB的长,圆心到直线y=x+a的距离为AB的一半,利用点到直线的距离公式列出关于a的方程,求出方程的解即可得到实数a的值.
解答: 解:∵OA⊥OB,OA=OB,
∴△AOB为等腰直角三角形,
又圆心坐标为(0,0),半径R=2,
∴AB=
2
R=2
2

∴圆心到直线y=x+a的距离d=
1
2
AB=
|a|
2
=
2

∴|a|=2,
∴a=±2.
故答案为:±2.
点评:此题考查了直线与圆相交的性质,涉及的知识有:等腰直角三角形的判定与性质,以及点到直线的距离公式,其中根据题意得出△AOB为等腰直角三角形是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网