题目内容

过直线x+y-2
2
=0上的点P作圆x2+y2=1的两条切线,若两切线的夹角为60°,则点P的坐标为(  )
A、(0,2
2
B、(2
2
,0)
C、(
2
2
D、(
3
2
2
2
2
)或(
2
2
3
2
2
考点:圆的切线方程
专题:计算题,直线与圆
分析:根据题意画出相应的图形,设P的坐标为(a,b),由PA与PB为圆的两条切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,再由切线长定理得到PO为角平分线,根据两切线的夹角为60°,求出∠APO和∠BPO都为30°,在直角三角形APO中,由半径AO的长,利用30°角所对的直角边等于斜边的一半求出OP的长,由P和O的坐标,利用两点间的距离公式列出关于a与b的方程,记作①,再由P在直线x+y-2
2
=0上,将P的坐标代入得到关于a与b的另一个方程,记作②,联立①②即可求出a与b的值,进而确定出P的坐标.
解答: 解:根据题意画出相应的图形,如图所示:
直线PA和PB为过点P的两条切线,且∠APB=60°,
设P的坐标为(a,b),连接OP,OA,OB,
∴OA⊥AP,OB⊥BP,PO平分∠APB,
∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,
又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,
∴OA=OB=1,
∴OP=2AO=2BO=2,∴
a2+b2
=2,即a2+b2=4①,
又P在直线x+y-2
2
=0上,∴a+b-2
2
=0,即a+b=2
2
②,
联立①②解得:a=b=
2

则P的坐标为(
2
2
).
故选:C.
点评:此题考查了圆的切线方程,涉及的知识有:切线的性质,切线长定理,含30°直角三角形的性质,以及两点间的距离公式,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网