题目内容

10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围是(  )
A.[$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{3}$}B.[$\sqrt{3}$,$\sqrt{5}$)∪{$\frac{\sqrt{7}}{7}$}C.[$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{5}$}D.[$\sqrt{3}$,$\sqrt{7}$)∪{$\frac{\sqrt{5}}{5}$}

分析 若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的图象上关于直线x=1对称的点有且仅有一对,则函数y=logax与y=2|x-5|-2在[3,7]上有且只有一个交点,解得实数a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的图象上
关于直线x=1对称的点有且仅有一对,
∴函数y=logax,与y=2|x-5|-2在[3,7]上有且只有一个交点,
当对数函数的图象过(5,-2)点时,
由loga5=-2,解得a=$\frac{\sqrt{5}}{5}$;
当对数函数的图象过(3,2)点时,
由loga3=2,解得a=$\sqrt{3}$;
当对数函数的图象过(7,2)点时,
由loga7=2,解得a=$\sqrt{7}$.
故a∈[$\sqrt{3}$,$\sqrt{7}$)∪{$\frac{\sqrt{5}}{5}$},
故选:D.

点评 本题考查的知识点是分段函数的应用,注意运用转化思想,转化为函数的图象的交点问题,考查数形结合思想,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网