题目内容
5.设全集U=R,A={x|x2-x-6<0},B={x|y=lg(x+1)},则图中阴影部分表示的集合为( )| A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|-1<x<3} | D. | {x|x>-1} |
分析 阴影部分表示的集合为A∩B,解出A,B,再求交集.
解答 解:阴影部分表示的集合为A∩B,而A={x|x2-x-6<0}={x|-2<x<3},B={x|y=lg(x+1)}={x|x>-1},
故A∩B={x|-1<x<3},
故选C.
点评 本题考查了求Venn图表示的集合,关键是根据图形会判断出阴影部分表示的集合元素特征,再通过集合运算求出.
练习册系列答案
相关题目
16.已知集合A={x|x2-9>0},B={x|2<x≤5},则A∩B=( )
| A. | (3,5] | B. | (-∞,-3)∪(5,+∞) | C. | (-∞,-3)∪[5,+∞) | D. | (-∞,2]∪(3,+∞) |
10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围是( )
| A. | [$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{3}$} | B. | [$\sqrt{3}$,$\sqrt{5}$)∪{$\frac{\sqrt{7}}{7}$} | C. | [$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{5}$} | D. | [$\sqrt{3}$,$\sqrt{7}$)∪{$\frac{\sqrt{5}}{5}$} |