题目内容
17.角α的终边过点P(4,-3),则cosα的值为( )| A. | 4 | B. | -3 | C. | $\frac{4}{5}$ | D. | -$\frac{3}{5}$ |
分析 利用任意角的三角函数的定义,求得cosα的值.
解答 解:∵角α的终边过点P(4,-3),∴x=4,y=-3,r=|OP|=5,
则cosα=$\frac{x}{r}$=$\frac{4}{5}$,
故选:C.
点评 本题主要考查任意角的三角函数的定义,属于基础题.
练习册系列答案
相关题目
7.按如图的规律所拼成的一图案共有1024个大小相同的小正三角形“△”或“?”,则该图案共有( )

| A. | 16层 | B. | 32层 | C. | 64层 | D. | 128层 |
5.若复数z满足($\sqrt{3}$-2i)z=6i(i是虚数单位),则z=( )
| A. | $\frac{-12+6\sqrt{3}i}{7}$ | B. | $\frac{3}{2}$-$\frac{\sqrt{3}}{2}$i | C. | $\frac{3}{2}$+$\frac{\sqrt{3}}{2}$i | D. | -$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$i |
12.某研究机构在对具有线性相关的两个变量x和y进行统计分析时,得到数据如下:
由表中的数据求得y关于x的线性回归方程为$\widehaty$=-0.7x+a,则a等于( )
| x | 1 | 2 | 3 | 4 |
| y | 4.5 | 4 | 3 | 2.5 |
| A. | 10.5 | B. | 5.25 | C. | 5.2 | D. | 5.15 |
6.已知$a=\sqrt{3}$,$b={125^{\frac{1}{6}}}$,$c={log_{\frac{1}{6}}}\frac{1}{7}$,则下列不等关系正确的是( )
| A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<a<b |
7.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y-1≥0}\\{x-3y+2≤0}\\{x+2y-8≤0}\end{array}\right.$,则目标函数z=(2-z)x+y的最大值为( )
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{7}{3}$ | D. | 3 |