题目内容

若函数f(x)=x2-
1
2
lnx+1在(k-1,k+1)内不是单调函数,则实数k的取值范围是
 
考点:二次函数的性质
专题:函数的性质及应用
分析:先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解方程fˊ(x)=0,使方程的解在定义域内的一个子区间(k-1,k+1)内,建立不等关系,解之即可.
解答: 解:因为f(x)定义域为(0,+∞),又f′(x)=2x-
1
2x

由f'(x)=0,得x=
1
2

当x∈(0,
1
2
)时,f'(x)<0,当x∈(
1
2
,+∞)时,f'(x)>0
据题意,
k-1<
1
2
<k+1
k-1≥0

解得1≤k<
3
2

故实数k的取值范围是[1,
3
2
)

故答案为:[1,
3
2
)
点评:本题主要考查了对数函数的导数,以及利用导数研究函数的单调性等基础知识,考查计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网