题目内容

2.函数y=0.75sin(x+$\frac{π}{4}$)(x∈[-π,π])的递减区间是[-π,-$\frac{3π}{4}$],[$\frac{π}{4}$,π];
函数y=$\sqrt{3}$cos($\frac{1}{2}$x+$\frac{2π}{3}$)(x∈[0,2π])的递增区间是[$\frac{2π}{3}$,2π];
函数y=$\frac{3}{5}$sin(3x-$\frac{π}{6}$)(x∈R)的递增区间是[-$\frac{π}{9}$+$\frac{2kπ}{3}$,$\frac{2π}{9}$+$\frac{2kπ}{3}$],k∈Z.

分析 根据三角函数的单调性列出不等式解出单调区间,然后与定义域取交集即可.

解答 解:(1)令$\frac{π}{2}+2kπ≤$x+$\frac{π}{4}$≤$\frac{3π}{2}+2kπ$,解得$\frac{π}{4}+2kπ≤x≤\frac{5π}{4}+2kπ$.
当k=-1时,函数的递减区间为[-$\frac{7π}{4}$,-$\frac{3π}{4}$],当k=0时,函数的递减区间为[$\frac{π}{4}$,$\frac{5π}{4}$].
∴函数在[-π,π]上的递减区间为[-π,-$\frac{3π}{4}$],[$\frac{π}{4}$,π].
(2)令-π+2kπ≤$\frac{1}{2}x+\frac{2π}{3}$≤2kπ,解得-$\frac{10π}{3}+4kπ$≤x≤-$\frac{4π}{3}+4kπ$.
当k=1时,函数的单调增区间是[$\frac{2π}{3}$,$\frac{8π}{3}$].
∴函数在[0,2π]上的递增区间是[$\frac{2π}{3}$,2π].
(3)令-$\frac{π}{2}+2kπ$≤3x-$\frac{π}{6}$≤$\frac{π}{2}+2kπ$,解得-$\frac{π}{9}$+$\frac{2kπ}{3}$≤x≤$\frac{2π}{9}+\frac{2kπ}{3}$.
∴函数的递增区间是[-$\frac{π}{9}$+$\frac{2kπ}{3}$,$\frac{2π}{9}+\frac{2kπ}{3}$],k∈Z.

点评 本题考查了三角函数的图象与性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网