ÌâÄ¿ÄÚÈÝ
12£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨¦È+$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£¨¢ñ£©Ö±½Óд³öC1µÄÆÕͨ·½³ÌºÍ¼«×ø±ê·½³Ì£¬Ö±½Óд³öC2µÄÆÕͨ·½³Ì£»
£¨¢ò£©µãAÔÚC1ÉÏ£¬µãBÔÚC2ÉÏ£¬Çó|AB|µÄ×îСֵ£®
·ÖÎö £¨¢ñ£©°ÑÔ²C1µÄ²ÎÊý·½³Ì±äÐΣ¬Á½Ê½Æ½·½×÷ºÍ¿ÉµÃÆÕͨ·½³Ì£¬½øÒ»²½ÇóµÃ¼«×ø±ê·½³Ì£¬Õ¹¿ªÁ½½ÇºÍµÄÕýÏÒ£¬½áºÏx=¦Ñcos¦È£¬y=¦Ñsin¦È¿ÉµÃC2µÄÆÕͨ·½³Ì£»
£¨¢ò£©Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¿ÉµÃÖ±ÏߺÍÔ²ÏàÀ룬Óɵ㵽ֱÏߵľàÀë¼õÈ¥Ô²µÄ°ë¾¶ÇóµÃ|AB|µÄ×îСֵ£®
½â´ð ½â£º£¨¢ñ£©ÓÉ$\left\{\begin{array}{l}{x=-2+2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x+2=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬Á½Ê½Æ½·½×÷ºÍµÃ£º£¨x+2£©2+y2=4£¬
C1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-4cos¦È£¬
ÓɦÑsin£¨¦È+$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£¬µÃ$¦Ñsin¦Ècos\frac{¦Ð}{4}+¦Ñcos¦Èsin\frac{¦Ð}{4}=2\sqrt{2}$£¬
¼´$\frac{\sqrt{2}}{2}¦Ñsin¦È+\frac{\sqrt{2}}{2}¦Ñcos¦È=2\sqrt{2}$£¬
µÃx+y-4=0£®
£¨¢ò£©C1ÊÇÒԵ㣨-2£¬0£©ÎªÔ²ÐÄ£¬°ë¾¶Îª2µÄÔ²£¬C2ÊÇÖ±Ïߣ®
Ô²Ðĵ½Ö±ÏßC2µÄ¾àÀëΪ$\frac{|-2+0-4|}{\sqrt{2}}=3\sqrt{2}$£¾2£¬Ö±ÏߺÍÔ²ÏàÀ룮
¡à|AB|µÄ×îСֵΪ$3\sqrt{2}-2$£®
µãÆÀ ±¾Ì⿼²é½âµÃÇúÏߵļ«×ø±ê·½³Ì£¬¿¼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬ÑµÁ·ÁËÖ±ÏßÓëԲλÖùØÏµµÄÓ¦Óã¬ÊÇÖеµÌ⣮
| A£® | $[{-\frac{¦Ð}{4}+k¦Ð£¬\frac{¦Ð}{4}+k¦Ð}]£¨k¡ÊZ£©$ | B£® | $[{\frac{¦Ð}{4}+k¦Ð£¬\frac{3¦Ð}{4}+k¦Ð}]£¨k¡ÊZ£©$ | ||
| C£® | $[{\frac{¦Ð}{12}+k¦Ð£¬\frac{7¦Ð}{12}+k¦Ð}]£¨k¡ÊZ£©$ | D£® | $[{-\frac{5¦Ð}{12}+k¦Ð£¬\frac{¦Ð}{12}+k¦Ð}]£¨k¡ÊZ£©$ |
| A£® | [$\frac{2}{5{e}^{2}}$£¬$\frac{1}{3e}$£© | B£® | [$\frac{1}{3e}$£¬$\frac{\sqrt{e}}{4e}$£© | C£® | [$\frac{1}{3e}$£¬e] | D£® | [$\frac{\sqrt{e}}{4e}$£¬e] |
| A£® | $£¨\frac{ln4}{3}£¬+¡Þ£©$ | B£® | $£¨\frac{ln2}{3}£¬+¡Þ£©$ | C£® | $£¨\frac{{\sqrt{3}}}{2}£¬+¡Þ£©$ | D£® | $£¨\frac{{\sqrt{e}}}{3}£¬+¡Þ£©$ |