题目内容
7.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人 来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为$\frac{5}{8}$.分析 求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15秒才出现绿灯的概率.
解答 解:∵红灯持续时间为40秒,至少需要等待15秒才出现绿灯,
∴一名行人前25秒来到该路口遇到红灯,
∴至少需要等待15秒才出现绿灯的概率为$\frac{25}{40}$=$\frac{5}{8}$.
故答案为$\frac{5}{8}$.
点评 本题考查概率的计算,考查几何概型,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
17.设集合A={-1,0,1,2},B={x|x-1<0},则A∩B=( )
| A. | (-1,1) | B. | (-1,0) | C. | {-1,0,1} | D. | {-1,0} |
18.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象与直线y=b(0<b<2)的三个相邻交点的横坐标分别是$\frac{π}{6},\frac{5π}{6},\frac{7π}{6}$,且函数f(x)在x=$\frac{3π}{2}$处取得最小值,那么|φ|的最小值为( )
| A. | $\frac{3π}{2}$ | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{3}$ |
15.某校卫生所成立了调查小组,调查“按时刷牙与不患龋齿的关系”,对该校某年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:按时刷牙且不患龋齿的学生有160 名,不按时刷牙但不患龋齿的学生有100 名,按时刷牙但患龋齿的学生有 240 名.
(1)该校4名校卫生所工作人员甲、乙、丙、丁被随机分成两组,每组 2 人,一组负责数据收集,另一组负责数据处理,求工作人员甲乙分到同一组的概率.
(2)是否有99.9%的把握认为该年级学生的按时刷牙与不患龋齿有关系?
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(1)该校4名校卫生所工作人员甲、乙、丙、丁被随机分成两组,每组 2 人,一组负责数据收集,另一组负责数据处理,求工作人员甲乙分到同一组的概率.
(2)是否有99.9%的把握认为该年级学生的按时刷牙与不患龋齿有关系?
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.010 | 0.005 | 0.001 |
| k0 | 6.635 | 7.879 | 10.828 |
19.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为$\frac{1}{2}$,两次闭合后都出现红灯的概率为$\frac{1}{5}$,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )
| A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |