题目内容
2.设函数f'(x)是函数f(x)(x∈R)的导函数,f(0)=1,且$f(x)=\frac{1}{3}f'(x)-1$,则4f(x)>f'(x)的解集为( )| A. | $(\frac{ln4}{3},+∞)$ | B. | $(\frac{ln2}{3},+∞)$ | C. | $(\frac{{\sqrt{3}}}{2},+∞)$ | D. | $(\frac{{\sqrt{e}}}{3},+∞)$ |
分析 把已知等式变形,可得3f(x)=f′(x)-3,则f′(x)=3f(x)+3,令f(x)=aebx+c,由f(0)=1,得a+c=1,再由3f(x)=f′(x)-3,得到3aebx+3c=abebx-3,则$\left\{\begin{array}{l}{3a-ab=0}\\{-3-3c=0}\end{array}\right.$,求得a,b,c的值,可得函数解析式,把4f(x)>f'(x)转化为关于x的不等式求解.
解答 解:由$f(x)=\frac{1}{3}f'(x)-1$,得3f(x)=f′(x)-3,
∴f′(x)=3f(x)+3,
令f(x)=aebx+c,
∵f(0)=1,∴a+c=1,
∵3f(x)=f′(x)-3,
∴3aebx+3c=abebx-3,
∴$\left\{\begin{array}{l}{3a-ab=0}\\{-3-3c=0}\end{array}\right.$,解得a=2,b=3,c=-1.
∴f(x)=2e3x-1,
∵4f(x)>f'(x),
∴8e3x-4>6e3x,
则e3x>2,即x>$\frac{ln2}{3}$.
∴4f(x)>f'(x)的解集为$(\frac{ln2}{3},+∞)$.
故选:B.
点评 本题考查导数的运算及应用,考查了推理能力与计算能力,是压轴题.
练习册系列答案
相关题目
10.若抛物线y2=2px的准线经过双曲线x2-y2=2的右焦点,则p的值为( )
| A. | -2 | B. | -3 | C. | -4 | D. | -5 |
11.设F1,F2分别为椭圆C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1({a_1}>{b_1}>0)$与双曲线C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}=1({a_2}>0,{b_2}>0)$的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率${e_1}=\frac{3}{4}$,则双曲线C2的离心率e2的值为( )
| A. | $\frac{9}{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{4}$ |
3.过点M(0,1)和N(-1,m2)(m∈R)的直线的倾斜角α的取值范围是( )
| A. | 0°≤α<180° | B. | 45°≤α<180° | ||
| C. | 0°≤α≤45°或90°<α<180° | D. | 0°≤α≤45°或90°≤α<180° |