题目内容

16.双曲线$\frac{{x}^{2}}{{m}^{2}+12}$-$\frac{{y}^{2}}{4-{m}^{2}}$=1的焦距是(  )
A.4B.6C.8D.与m有关

分析 首先判断双曲线的焦点在x轴上,求出a2,b2,由c2=a2+b2,计算可得c,即可得到焦距2c.

解答 解:双曲线$\frac{{x}^{2}}{{m}^{2}+12}$-$\frac{{y}^{2}}{4-{m}^{2}}$=1焦点在x轴上,
即有4-m2>0,
则a2=m2+12,b2=4-m2
c2=a2+b2=16,
则c=4,焦距2c=8.
故选C.

点评 本题考查双曲线的方程和性质,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网