题目内容
17.不重合的三个平面把空间分成n部分,则n的可能值为4,6,7或8.分析 分别讨论三个平面的位置关系,根据它们位置关系的不同,确定平面把空间分成的部分数目.
解答 解:若三个平面互相平行,则可将空间分为4部分;
若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6部分;
若三个平面交于一线,则可将空间分为6部分;
若三个平面两两相交且三条交线平行(联想三棱柱三个侧面的关系),则可将空间分为7部分;
若三个平面两两相交且三条交线交于一点(联想墙角三个墙面的关系),则可将空间分为8部分;
故n等于4,6,7或8.
故答案为4,6,7或8.
点评 本题考查平面的基本性质及推论,要讨论三个平面不同的位置关系.考查学生的空间想象能力.
练习册系列答案
相关题目
8.已知定义在(0,+∞)的函数f(x)=|4x(1-x)|,若关于x的方程f2(x)+(t-3)f(x)+t-2=0有且只有3个不同的实数根,则实数t的取值集合是{2,$5-2\sqrt{2}$}.
2.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,则实数a的取值集合为( )
| A. | [-$\frac{1}{12}$,0] | B. | [-$\frac{1}{12}$,-$\frac{4}{49}$) | C. | (-$\frac{4}{49}$,0] | D. | [-$\frac{4}{49}$,0] |
9.函数y=|log3x|的图象与直线l1:y=m从左至右分别交于点A,B,与直线${l_2}:y=\frac{8}{2m+1}(m>0)$从左至右分别交于点C,D.记线段AC和BD在x轴上的投影长度分别为a,b,则$\frac{b}{a}$的最小值为( )
| A. | $81\sqrt{3}$ | B. | $27\sqrt{3}$ | C. | $9\sqrt{3}$ | D. | $3\sqrt{3}$ |
7.设集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-1)>0},则“x∈A∪B“是“x∈C“的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |