题目内容
设集合A={-1,0,1},B={2,3,4,5,6},f是A和B的映射,对任意的x∈A,都有f(x)+x+x•f(x)为奇数,则满足条件的映射的个数为( )
| A、12 | B、15 | C、25 | D、50 |
考点:映射
专题:函数的性质及应用
分析:根据题意,对集合A中的三个数逐一分析,利用乘法原理即可求出满足条件的映射的个数.
解答:
解:∵集合A={-1,0,1},B={2,3,4,5,6},
∴当x为奇数时,x+f(x)+xf(x)是奇数,
当x为偶数时,若x+f(x)+xf(x)是奇数,
则f(x)为奇数,
因此f(-1)的值可以为2,3,4,5,6,
f(0)的值可以为3,5,
f(1)的值可以为2,3,4,5,6,
所以满足条件的映射的个数为:5×2×5=50.
故选:D.
∴当x为奇数时,x+f(x)+xf(x)是奇数,
当x为偶数时,若x+f(x)+xf(x)是奇数,
则f(x)为奇数,
因此f(-1)的值可以为2,3,4,5,6,
f(0)的值可以为3,5,
f(1)的值可以为2,3,4,5,6,
所以满足条件的映射的个数为:5×2×5=50.
故选:D.
点评:本题主要考查了映射的概念,以及乘法原理的应用,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=
的定义域构成了集合M,则CRM=( )
| 2x-1 |
| A、{x|x≥0} | ||
B、{x|x≥
| ||
C、{x|x<
| ||
D、{x|0≤x≤
|
若x,y∈R,3x+5y>3-y+5-x,则x+y的值( )
| A、大于0 | B、小于0 |
| C、等于0 | D、不确定 |
已知f′(x)是函数f(x)=cosx的导函数,若g(x)=f(x)+
f′(x),则使函数y=g(x+a)是偶函数的一个a值是( )
| 3 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|
将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
…
按照以上排列的规律,第8行从左向右的第5个数为( )
1
2 3
4 5 6
7 8 9 10
…
按照以上排列的规律,第8行从左向右的第5个数为( )
| A、30 | B、31 | C、32 | D、33 |
等比数列前三项分别为x,2x+2,3x+3,则第四项为( )
A、-
| ||
B、
| ||
| C、4x+4 | ||
| D、(2x+2)÷[(3x+3)x] |
在数列{an}中,已知an=n2-n-50,则-8是该数列的( )
| A、第6项 | B、第7项 |
| C、第8项 | D、非任何一项 |