题目内容
已知数列{an}满足a1=1,an=
(n≥2).
(1)求数列{an}的通项公式;
(2)当1<k<3时,证明不等式:a1+a2+…+an>
.
| 4an-1 |
| kan-1+1 |
(1)求数列{an}的通项公式;
(2)当1<k<3时,证明不等式:a1+a2+…+an>
| 3n-8k |
| k |
考点:数列与不等式的综合,数列递推式
专题:综合题,等差数列与等比数列
分析:(1)分类讨论,利用
-
=
(
-
),可得数列{an}的通项公式;
(2)由an=
得an-
=
,从而可得an-
>
•
=
•
,即可证明结论.
| 1 |
| an |
| k |
| 3 |
| 1 |
| 4 |
| 1 |
| an-1 |
| k |
| 3 |
(2)由an=
| 3•4n-1 |
| k•4n-1+3-k |
| 3 |
| k |
| 3k-9 |
| k(k•4n-1+3-k) |
| 3 |
| k |
| 3k-9 |
| k |
| 1 |
| k•4n-1 |
| 3k-9 |
| k2 |
| 1 |
| 4n-1 |
解答:
(1)解:∵an=
(n≥2),
∴
=
•
+
,
∴
-
=
(
-
)
①k=3时,{
-1}是各项为0的常数列,∴an=1;
②k≠3时,{
-
}是以1-
为首项,
的等比数列,∴
-
=(1-
)•(
)n-1,
∴an=
,
综上,an=
;
(2)证明:由an=
得an-
=
,
∵1<k<3,
∴an-
>
•
=
•
∴a1+a2+…+an-
=(a1-
)+(a2-
)+…+(an-
)+8>
•(1+
+…+
)+8
=
•[1-(
)n]+8>
+8=
>0,
∴a1+a2+…+an>
.
| 4an-1 |
| kan-1+1 |
∴
| 1 |
| an |
| 1 |
| 4 |
| 1 |
| an-1 |
| k |
| 4 |
∴
| 1 |
| an |
| k |
| 3 |
| 1 |
| 4 |
| 1 |
| an-1 |
| k |
| 3 |
①k=3时,{
| 1 |
| an |
②k≠3时,{
| 1 |
| an |
| k |
| 3 |
| k |
| 3 |
| 1 |
| 4 |
| 1 |
| an |
| k |
| 3 |
| k |
| 3 |
| 1 |
| 4 |
∴an=
| 3•4n-1 |
| k•4n-1+3-k |
综上,an=
| 3•4n-1 |
| k•4n-1+3-k |
(2)证明:由an=
| 3•4n-1 |
| k•4n-1+3-k |
| 3 |
| k |
| 3k-9 |
| k(k•4n-1+3-k) |
∵1<k<3,
∴an-
| 3 |
| k |
| 3k-9 |
| k |
| 1 |
| k•4n-1 |
| 3k-9 |
| k2 |
| 1 |
| 4n-1 |
∴a1+a2+…+an-
| 3n-8k |
| k |
| 3 |
| k |
| 3 |
| k |
| 3 |
| k |
| 3k-9 |
| k2 |
| 1 |
| 4 |
| 1 |
| 4n-1 |
=
| 4(k-3) |
| k2 |
| 1 |
| 4 |
| 4(k-3) |
| k2 |
| 4(2k+3)(k-1) |
| k2 |
∴a1+a2+…+an>
| 3n-8k |
| k |
点评:本题考查数列的通项,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目