题目内容
已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn,数列{bn}满足b1=
,b2=
,对任意n∈N*.都有
=bn•bn+2.
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn,求证:
≤Tn<2.
| 1 |
| 2 |
| 1 |
| 4 |
| b | 2 n+1 |
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn,求证:
| 1 |
| 2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)利用nan+1=2Sn,再写一式,两式相减,再叠乘,即可求数列{an}的通项公式;在数列{bn}中,由
=bn•bn+2,b1=
,b2=
,知数列{bn}是等比数列,首项、公比均为
,由此可得数列{bn}的通项公式;
(2)利用错位相减法求数列的和,由此能证明
≤Tn<2.
| b | 2 n+1 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
(2)利用错位相减法求数列的和,由此能证明
| 1 |
| 2 |
解答:
解:(1)∵nan+1=2Sn,∴(n-1)an=2Sn-1(n≥2),
两式相减得,nan+1-(n-1)an=2an,
∴nan+1=(n+1)an=,即
=
,
∴an=a1×
×
×…×
=n(n≥2),
a1=1满足上式,
∴数列{an}的通项公式an=n(n∈N*).
在数列{bn}中,∵bn+1 2=bn•bn+2,b1=
,b2=
,
∴数列{bn}是等比数列,首项、公比均为
,
∴数列{bn}的通项公式bn=(
)n=
.
(Ⅱ)∵Tn=a1b1+a2b2+…+anbn=
+2×
+…+n×
,①
∴
Tn=
+2×
+…+(n-1)×
+n×
,②
由①-②,得
Tn=
+
+
+…+
-n×
=
-n×
=1-
,
∴Tn=2-
,
∴T1 =2-
=
,
∴
≤Tn<2.
两式相减得,nan+1-(n-1)an=2an,
∴nan+1=(n+1)an=,即
| an+1 |
| an |
| n+1 |
| n |
∴an=a1×
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
a1=1满足上式,
∴数列{an}的通项公式an=n(n∈N*).
在数列{bn}中,∵bn+1 2=bn•bn+2,b1=
| 1 |
| 2 |
| 1 |
| 4 |
∴数列{bn}是等比数列,首项、公比均为
| 1 |
| 2 |
∴数列{bn}的通项公式bn=(
| 1 |
| 2 |
| 1 |
| 2n |
(Ⅱ)∵Tn=a1b1+a2b2+…+anbn=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
∴
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
由①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
=
| ||||
1-
|
| 1 |
| 2n+1 |
=1-
| n+2 |
| 2n+1 |
∴Tn=2-
| n+2 |
| 2n |
∴T1 =2-
| 1+2 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
点评:本题考查数列递推式,考查数列的通项,考查错位相减法求数列的和,考查恒成立问题,确定数列的通项,正确求和是关键.
练习册系列答案
相关题目
已知{an}是等比数列,a1=-1,a4=64,则S4=( )
| A、-51 | B、64 | C、85 | D、51 |