题目内容
18.设二次函数f(x)=x2+bx+c(b,c∈R),f(1)=0,且1≤x≤3时,f(x)≤0恒成立,f(x)是区间[2,+∞)上的增函数.函数f(x)的解析式是f(x)=x2-4x+3;若|f(m)|=|f(n)|,且m<n<2,u=m+n,u的取值范围是2<u<4-$\sqrt{2}$.分析 由已知f(1)=0,可得c=-b-1,f(x)=x2+bx-b-1=(x-1)(x+b+1),利用1≤x≤3时,f(x)≤0恒成立,f(x)是区间[2,+∞)是增函数,求出b.即可求函数f(x)的解析式;若|f(m)|=|f(n)|,且m<n<2,f(m)=-f(n),可得(m-2)2+(n-2)2=2(m<n<2),u=m+n,即可求u的取值范围.
解答 解:由已知f(1)≥0与f(1)≤0同时成立,则必有f(1)=0,故b+c+1=0.
∴c=-b-1,
∴f(x)=x2+bx-b-1=(x-1)(x+b+1),
∵1≤x≤3时,f(x)≤0恒成立,
∴-b-1≥3,∴b≤-4,
∵f(x)是区间[2,+∞)是增函数,
∴-$\frac{b}{2}$≤2,∴b≥-4,
∴b=-4,c=3,
∴f(x)=x2-4x+3;
∵f(x)=x2-4x+3,
∴函数在(-∞,2)上单调递减,
∵|f(m)|=|f(n)|,且m<n<2,
∴f(m)=-f(n),
∴m2-4m+3=-n2+4n-3,
∴(m-2)2+(n-2)2=2(m<n<2)
u=m+n与圆弧相切时,切点为(1,1),u=2,
直线过点(2,2-$\sqrt{2}$)时,u=4-$\sqrt{2}$,
故答案为:f(x)=x2-4x+3,2<u<4-$\sqrt{2}$.
点评 本题考查函数的解析式,考查二次函数的性质,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
6.设i为虚数单位,复数$\frac{2i}{1+i}$-2在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
13.下列等式一定成立的是( )
| A. | $\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}$ | B. | $\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$ | C. | $\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{CB}$ | D. | $\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}$ |
3.已知$cos({π+α})=-\frac{{\sqrt{10}}}{5}$,且$α∈({-\frac{π}{2},0})$,则tanα的值为( )
| A. | $-\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | -$\frac{\sqrt{6}}{2}$ |
8.函数y=lg(-x2+2x)的单调递增区间是( )
| A. | (-∞,1) | B. | (1,2) | C. | (0,1) | D. | (1,+∞) |