题目内容

18.若实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$则z=-$\frac{5}{4x+3y}$的最大值为(  )
A.-$\frac{15}{8}$B.-$\frac{5}{4}$C.-$\frac{1}{2}$D.-1

分析 约束条件作出可行域,化目标函数为直线方程的斜截式,由图看出直线4x+3y=0平行的直线过可行域内A点时z有最大值,把C点坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$作可行域如图,
由z=-$\frac{5}{4x+3y}$的最大值可知,4x+3y取得最大值时,
z取得最大值,
与4x+3y=0,平行的准线经过A时,即:$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$
可得A(1,2),4x+3y取得最大值,故z最大,
即:zmax=$-\frac{5}{4×1+3×2}$=$-\frac{1}{2}$.
故选:C.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网