题目内容

3.如果曲线2|x|-y-4=0的图象与曲线C:x2+λy2=4恰好有两个不同的公共点,则实数λ的取值范围是(  )
A.[-$\frac{1}{4}$,$\frac{1}{4}$]B.[-$\frac{1}{4}$,$\frac{1}{4}$)C.(-∞,-$\frac{1}{4}$]∪[0,$\frac{1}{4}$)D.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)

分析 去绝对值可得x≥0时,y=2x-4;当x<0时,y=-2x-4,数形结合可得曲线必相交于(±2,0),分别联立方程结合一元二次方程根的分布可得.

解答 解:由2|x|-y-4=0可得y=2|x|-4,
当x≥0时,y=2x-4;当x<0时,y=-2x-4,
∴函数y=2|x|-4的图象与方程x2+λy2=4的曲线必相交于(±2,0)
∴为了使函数y=2|x|-4的图象与方程x2+λy2=1的曲线恰好有两个不同的公共点,
则y=2x-4代入方程x2+λy2=1,整理可得(1+4λ)x2-16λx+16λ-4=0,
当λ=-$\frac{1}{4}$时,x=2满足题意,由于△>0,2是方程的根,∴$\frac{16λ-4}{1+4λ}$<0,
解得-$\frac{1}{4}$<λ<$\frac{1}{4}$时,方程两根异号,满足题意;
y=-2x-4代入方程x2+λy2=1,整理可得(1+4λ)x2+16λx+16λ-4=0
当λ=-$\frac{1}{4}$时,x=-2满足题意,由于△>0,-1是方程的根,$\frac{16λ-4}{1+4λ}$<0,
解得-$\frac{1}{4}$<λ<$\frac{1}{4}$时,方程两根异号,满足题意;
综上知,实数λ的取值范围是[-$\frac{1}{4}$,$\frac{1}{4}$)
故选:B.

点评 本题考查椭圆的简单几何性质,考查分类讨论的数学思想和不等式的解法以及数形结合,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网