题目内容
15.指出下列函数的振幅、周期、初相及当x=π时的相位:(1)y=2sin(3x+$\frac{π}{4}$);
(2)y=$\frac{1}{2}$sin(2x-$\frac{π}{6}$)
分析 根据三角函数中参数的物理意义回答.
解答 解:(1)y=2sin(3x+$\frac{π}{4}$)的振幅为2,周期T=$\frac{2π}{3}$,初相为$\frac{π}{4}$,
当x=π时相位为3π+$\frac{π}{4}$=$\frac{13π}{4}$.
(2)y=$\frac{1}{2}$sin(2x-$\frac{π}{6}$)的振幅为$\frac{1}{2}$,周期T=$\frac{2π}{2}=π$,初相为-$\frac{π}{6}$,
当x=π时相位为2$π-\frac{π}{6}$=$\frac{11π}{6}$.
点评 本题考查了y=Asin(ωx+φ)的参数的物理意义,属于基础题.
练习册系列答案
相关题目
5.已知等差数列{an}的公差不为0,a1=1,且$\frac{1}{a_1},\;\frac{1}{a_2},\;\frac{1}{a_4}$成等比数列,设{an}的前n项和为Sn,则Sn=( )
| A. | $\frac{{{{(n+1)}^2}}}{4}$ | B. | $\frac{n(n+3)}{4}$ | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{{{n^2}+1}}{2}$ |
6.设集合A={x|x2-2x≥0},B={x|-1<x<2},则A∩B=( )
| A. | {x|0≤x≤2} | B. | {x|0<x<2} | C. | {x|-1≤x<0} | D. | {x|-1<x≤0} |
3.如果曲线2|x|-y-4=0的图象与曲线C:x2+λy2=4恰好有两个不同的公共点,则实数λ的取值范围是( )
| A. | [-$\frac{1}{4}$,$\frac{1}{4}$] | B. | [-$\frac{1}{4}$,$\frac{1}{4}$) | C. | (-∞,-$\frac{1}{4}$]∪[0,$\frac{1}{4}$) | D. | (-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞) |
10.已知条件p:x≥1,条件q:$\frac{1}{x}$<1,则¬p是q的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
7.函数f(x)为奇函数,则函数$\frac{{3}^{x}-1}{{3}^{x}+1}$•f(x)为( )
| A. | 偶函数 | B. | 奇函数 | ||
| C. | 既是偶函数,也是奇函数 | D. | 既非偶函数,也非奇函数 |
5.已知x是x1,x2,…,x10的平均值,a1为x1,x2,x3,x4的平均值,a2为x5,x6,x10的平均值,则x=( )
| A. | $\frac{2{a}_{1}+3{a}_{2}}{5}$ | B. | $\frac{3{a}_{1}+2{a}_{2}}{5}$ | C. | a1+a2 | D. | $\frac{{a}_{1}+{a}_{2}}{2}$ |