题目内容
若数列{an}的首项为
,且(2n+3)an+1-(2n-1)an=0,n∈N*,则此数列的通项公式为: .
| 1 |
| 3 |
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:把数列递推式变形,得到
=
,然后利用累积法求数列的通项公式.
| an+1 |
| an |
| 2n-1 |
| 2n+3 |
解答:
解:由(2n+3)an+1-(2n-1)an=0,得
=
,
∴
=
.
=
.
=
.
…
=
.
=
.
累积得:
=
=
,
又a1=
,
∴an=
.
故答案为:an=
.
| an+1 |
| an |
| 2n-1 |
| 2n+3 |
∴
| a2 |
| a1 |
| 1 |
| 5 |
| a3 |
| a2 |
| 3 |
| 7 |
| a4 |
| a3 |
| 5 |
| 9 |
…
| an-1 |
| an-2 |
| 2n-5 |
| 2n-1 |
| an |
| an-1 |
| 2n-3 |
| 2n+1 |
累积得:
| an |
| a1 |
| 1×3 |
| (2n-1)(2n+1) |
| 3 |
| 4n2-1 |
又a1=
| 1 |
| 3 |
∴an=
| 1 |
| 4n2-1 |
故答案为:an=
| 1 |
| 4n2-1 |
点评:本题考查了数列递推式,考查了累积法求数列的通项公式,是中档题.
练习册系列答案
相关题目