题目内容
设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( )
| A、2 | ||
| B、4 | ||
C、-
| ||
D、-
|
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用,直线与圆
分析:欲求曲线y=f(x)在点(1,f(1))处切线的斜率,即求f′(1),先求出f′(x),然后根据曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1求出g′(1),从而得到f′(x)的解析式,即可求出所求.
解答:
解:对函数f(x)=g(x)+x2,两边求导,可得
f′(x)=g′(x)+2x.
∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,
∴g′(1)=2,
∴f′(1)=g′(1)+2×1=2+2=4,
∴y=f(x)在点(1,f(1))处切线斜率为4.
故选:B.
f′(x)=g′(x)+2x.
∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,
∴g′(1)=2,
∴f′(1)=g′(1)+2×1=2+2=4,
∴y=f(x)在点(1,f(1))处切线斜率为4.
故选:B.
点评:本题考查导数的运用:求切线方程,主要考查导数的几何意义:曲线在该点处切线的斜率,属于基础题.
练习册系列答案
相关题目
为了得到函数y=
sin3x的图象,可以将函数y=sin3x+cos3x的图象( )
| 2 |
A、向右平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向左平移
|